Comparison of Neural Network and Maximum Likelihood Approaches in Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

A Comparative Study Between Neural Network and Maximum Likelihood in the Satellite Image Classification

In this paper it's showed a comparative study between two techniques of satellite image classification. The studied techniques are the Maximum Likelihood statistical method and an Artificial Intelligence technique based in Neural Networks. The analyzed images were scanned by CBERS 1 satellite and supplied by Brazilian National Institute for Space Research (INPE). These images refer to Province ...

متن کامل

Combining of Image Classification With Probabilistic Neural Network (PNN) Approaches Based on Expectation Maximum (EM)

This paper presents the design of classifiers with neural network approach based on the method used Expectations Maximum (EM). The decision rule of Bayes classifier using the Minimum Error to the classification of a mixture of multitemporal imagery. In this particular, the multilayer perceptron neural network model with Probabilistic Neural Network (PNN) is used for nonparametric estimation of ...

متن کامل

Comparison of Mixture and Classification Maximum Likelihood approaches in Poisson Regression Models

In this work, we propose to compare two algorithms to compute maximum likelihood estimators of the parameters of a mixture Poisson regression models. To estimate these parameters, we may use the EM algorithm in a mixture approach or the CEM algorithm in a classification approach. The comparison of the two procedures was done through a simulation study of the performance of these approaches on s...

متن کامل

Remotely Sensed LANDSAT Image Classification Using Neural Network Approaches

In paper, LANDSAT multispectral image is classified using several unsupervised and supervised techniques. Pixel-by-pixel classification approaches proved to be infeasible as well as time consuming in case of multispectral images. To overcome this, instead of classifying each pixel, feature based classification approach is used. Three supervised techniques namely, k-NN, BPNN and PCNN are investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Sciences

سال: 2010

ISSN: 1812-5654

DOI: 10.3923/jas.2010.2847.2854